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Chapter 1 

Executive Summary 

This document presents the final technical report on work done between April 1997 to 
December 1999 on "Adaptive Space-Time Processing for High Performance, Robust Military 
Wireless Communications". The work studied the operation of adaptive arrays in fading 
channels and developed algorithms for fading mitigation and interference cancellation. The 
research spread over several topics. These topics and associated main results are summarized 
below. 

We studied the performance of adaptive arrays for wireless communications over fading 
channels in the presence of cochannel interference (CCI). In particular, we studied the case 
when the number of interference sources exceeds the number of degrees of freedom. Such 
case is of interest in wireless communications when practical considerations dictate a small 
number of antennas in the array and there are multiple interference sources competing with 
the signal of interest. We analyzed the performance of adaptive arrays in Rayleigh and Ricean 
channels. The main contribution of this analysis is the development of the theory when both 
the signal of interest (SOI) and the cochannel interference (CCI) arg assumed subject to 
fading conditions. We considered BPSK signalling in flat, quasi-static channels. Rayleigh or 
Rice fading was assumed for the SOI, while CCI was assumed subject to Rayleigh fading. 
Using a multivariate statistical analysis approach and assuming equal-power interference 
sources, analytical expressions were derived for the density function of the array output 
signal-to-interference ratio (SIR), the outage probability, and the average probability of 
bit error with two methods of antenna combining: maximal ratio combining and optimum 
combining [1,2]. A limited analysis of the equal gain combiner was also obtained. 

When the number of interference sources is smaller than the number of degrees of freedom, 
and if optimum combining is applied, the interference is canceled by the array. We derived 
expressions for the exact bit error probability (BEP) for the detection of coherent binary PSK 
signals of the optimum combiner employing space diversity when both the desired signal and a 
Gaussian co-channel interferer are subject to flat Rayleigh fading [3]. Two different methods 
were employed to reach two different, but numerically identical, expressions. With the direct 
method the conditional BEP is averaged over the fading of both signal and interference. 

We studied various aspects of the application of space-time processing to CDMA com- 
munications. In particular, we studied the relation between power control error and array 
processing for spatial diversity. It is well known that the capacity of CDMA systems de- 
grades rapidly with the increase in power control error. The performance of CDMA systems 



is also affected by factors such as large-scale fading, small-scale fading, and CCI. Most of 
the published research on the performance analysis of CDMA systems usually accounts for 
subsets of these factors. We provided a comprehensive analysis which takes into account the 
joined effect of several of the most important factors affecting the performance of CDMA 
systems. In particular, we developed new analytical expressions for the outage and bit error 
probability of CDMA systems. These expressions account for adverse effects such as path 
loss, large-scale fading (shadowing), small-scale fading (Rayleigh fading), and CCI, as well 
as for correcting mechanisms such as power control error (compensates for path loss and 
shadowing), spatial diversity (mitigates against Rayleigh fading), and voice activity gating 
(reduces CCI). This work is disseminated in [4, 5, 6, 7]. 

Space-time adaptive processing (STAP) can be applied to improve performance of both 
CDMA and TDMA communications systems. In previous work we have shown that STAP 
applied to CDMA systems is an efficient means to increase capacity by providing diversity 
paths to combat multipath and by suppressing interferences through spatial-temporal filter- 
ing. We studied the application of the eigencanceler, a reduced rank method based on the 
eigendecomposition of the estimated covariance matrix, to the wireless communication prob- 
lem. Simple closed-form bounds were obtained for the bit error rate of BPSK modulation 
in the presence of cochannel interference in systems using sample matrix inversion (SMI) 
and the eigencanceler. The application of SMI and the eigencanceler to a flat fading TDMA 
system was studied in the context of the IS-54/IS-136 standard. It was shown that adaptive 
antennas in conjunction with reduced-rank processing can be used to increase capacity of 
such systems by reducing the frequency reuse factor from 7 to 1 [8, 9, 10]. 



Chapter 2 

Introduction 

In wireless communications, the presence of cochannel interference (regardless of cell size) 
limits the system capacity, whereas multipath fading limits the system performance. Hence, 
methods that address these problems are of great interest. Antenna arrays, with different 
combining methods, have been shown to combat both multipath fading of the desired signal 
and cochannel interference (CCI), subsequently increasing the performance of mobile radio 
systems. The combining methods, which mainly include Equal Gain Combining (EGC), 
Maximal Ratio Combining (MRC) and Optimum Combining (OC), can make antenna arrays 
provide diversity paths to combat multipath fading of the desired signal and reduce the power 
of interfering signals at the receiver. 

With EGC all antenna channels are provided with equal gain, but varying phase to 
match the phase shift in the multipath fading channel. With MRC and OC, both gain 
and phase are controlled. MRC is the optimum linear combining technique for coherent 
reception with independent fading at each antenna element in the presence of spatially white 
Gaussian noise [11]. The complex weight at each element compensates for the phase shift 
in the channel and is proportional to the signal strength. MRC mitigates fading, however, 
it ignores cochannel interference (CCI). OC addresses both problems of multipath fading of 
the desired signal and the presence of CCI. With OC, the signals received by several antenna 
elements are weighted and combined to maximize the output signal-to-interference-plus-noise 

ratio (SINR) [12]. 
A growing body of work is available on antenna arrays in wireless. Works that consider 

diversity reception in Rayleigh/Ricean/Nakagami channels, but no cochannel interference 
(CCI), include [13, 14, 15, 16, 17]. The case of a single CCI was analyzed in [12, 18, 19]. 
The effect of CCI and fading was studied in [20], but that work did not consider diversity or 
combining methods. The performance of adaptive arrays with Optimum Combining (OC) 
in Rayleigh fading and equal-power CCI sources is reported in [1], and with arbitrary power 
interferers in [21]. 

Chapter 2 contains the signal models used in this report. In Chapter 3, we expand on 
previous work by studying the performance of wireless systems with adaptive arrays utilizing 
Equal Gain Combining (EGC) and Maximal Ratio Combining (MRC) in Rayleigh/Rice fad- 
ing in the presence of multiple equal-power CCI sources. We also expands [1] by considering 
Optimum Combining in the Ricean channel case. The emphasis is on obtaining closed-form 
expressions. 



In [22, 23], a closed form expression is given for the bit error rate (BEP) of the optimum 
combiner'of BPSK signals with flat Rayleigh fading and a co-channel interferer (CCI). The 
optimum combiner, in the context of this paper, refers to an antenna array that maximizes 
the signal-to-interference-plus-noise ratio (SINR) at the array output. The expression m [2, 
eq. (25)], was derived without explicitly taking into account the fading of the CCI. Rather, 
the CCI power averaged over fading was used in the derivation. 

We provide an exact result with Optimum Combining in Chapter 4 , in which the BEP 
is first expressed condüional on the fading of both signal of interest (SOI) and CCI. The 
average BEP is subsequently derived by taking the expectation with respect to the fading of 

both SOI and CCI. 
Due to the complexity of CDMA communications scenario, most published results ac- 

count for only some of the adverse effects of large-scale fading, small-scale fading , power 
control error (PCE) and cochannel interference etc. For example, the performance analysis 
related to the log-normal interference can be found in [24, 25, 26, 27, 28, 29], however the 
cited work does not consider small-scale fading effects. The performance analysis with both 
fading and shadowing is considered in several recent publications [30, 31, 32, 33, 34, 35]. 
However, results are published either as simulations or as approximations, which generally 
lack accuracy at low PCE. For accurate predictions of CDMA systems performance, it is of 
great interest to be able to develop closed-form expressions that simultaneously incorporate 
the effects of shadowing, power control error, Rayleigh fading, voice activity and space-time 

processing. 
The work in Chapter 5 attempts to provide more complete answers to the reverse link 

performance of wireless CDMA with Maximal Ratio Combining , and to develop expressions 
for the outage probability and probability of bit error, while taking into account multiple 

effects. 
We investigate the application of a reduced-rank method referred to as eigencanceler to 

implement an optimum combiner in a flat fading Rayleigh channel with unknown cochannel 
interference. It is well known in array processing that a loss in the signal-to-noise and 
interference ratio (SNIR) occurs when the array covariance matrix is estimated from a limited 
size training set. In work motivated by radar applications, it was found that reduced- 
rank methods can significantly reduce these losses by providing improved statistical stability 

[36,37]. 
In Chapter 6, we are concerned with the effects of training data on the performance of 

adaptive arrays for wireless communications in the following cases: (1) an optimum combiner 
of BPSK signals in a flat Rayleigh fading channel in the presence of cochannel interference 
(CCI), and (2) a system modeled after the IS-54/IS-136 standard utilizing optimum com- 
bining with multiple CCI sources. 



Chapter 3 

Signal Model 

In this chapter, the mathematical model for the type of signals addressed in the report is 
presented. Since part of the report deals with CDMA signals, the signal model for CDMA 
is also introduced. The following notation is adopted: boldface lower case letters denote 
vectors, boldface upper case letters denote matrices, the superscript H denotes Hermitian 
transpose. 

Consider the uplink of a mobile communication system employing a base station with 
an N element linear antenna array. The number of antenna elements is N and the number 
of cochannel interferes is L. After coherent demodulation and matched filtering, the array 
output sampled at t = kT is represented by the N dimensional vector 

L 

u [k] = yfPscszs [k] + 53 sfPiZi [k] Ci + n [k], (3.1) 
i=l 

where y/Ps, y/Pt are respectively, the signal and CCI amplitudes, the data symbols zs [k] are 
mutually independent and assume values € {-1,1} with equal probabilities, and n [k] is the 
vector of ambient noise. The noise is complex-valued, stationary, zero-mean white Gaussian 
with covariance matrix E [nnH] = N0I. The quantity * [k] incorporates information on the 
*th CCI and is given by [20] 

oo 

Zi [k] =   Y, bi H 9 (kT -mT- n) (3.2) 

where the CCI symbols 6* [m] assume values € {-1,1} with equal probability, are mutually 
independent, and are independent of zs [k]. The equivalent impulse response of the trans- 
mitter, channel and receiver g (t) has a raised cosine pulse shape with excess bandwidth ß. 
The random variable n represents the timing phase of the »th CCI and is assumed uni- 
formly distributed over the interval [0,T], where T is the symbol interval. CCI samples 
Zi = Zi [k], have the following properties: (1) E [zr] = 0 (since E % [k]] = 0), (2) due to the 
independence between interference sources, the random variables zt are mutually indepen- 
dent (hence, E [ziZj] = 0 for t ^ j), and (3) E [zf] = 1-/3/4 (see [20]). It is assumed that 
transmission of the signal takes place in a flat fading Rayleigh channel in the presence of 
additive white Gaussian noise and CCI. 

9 



The vectors cs and ct respectively, represent the channel complex gains for the sig- 
nal and CCI. Sometimes, we express cs and c* as cf = [aS)i,0!Sjle^-2... ,as,Ne? °-N\ , 
CT = \ai 1, a{ ie

?'^.2... , ai>Nej^N] , where as is the channel amplitude gain, 4>s is the total 
transmitter-to-receiver 'carrier phase shift due to their spatial separation and the random 
phase introduced by the fading channel, the random phases & of the interfering carriers are 
assumed uniformly distributed over the interval [0, 2TT], and a{ are random variables repre- 
senting the gain of the fading channel for the »th interferer. The channel vectors are mutually 
independent, but have identical distributions, which are complex-valued, zero-mean, multi- 
variate Gaussian with independent terms and a\ variance, i.e., for example E [cscs ] = asI.. 
The fading is assumed quasi-static, i.e., channel vectors are fixed over some time interval of 
interest referred to as frame, but vary independently from frame to frame. 

It is further assumed that the interference-plus-noise vector 

i=l 

has a multivariate Gaussian distribution with zero-mean and covariance 

£[x[fc]x[fc]H] =R 

where 

■R=£fi*cf+<xl (3-4) 
i=i 

is the (colored) noise covariance matrix. 

Signal Model for CDMA 

This system model represents the reverse link of a single cell CDMA system which serves Ku 

users, and uses a base station with an M-element antenna array. The received signals are 
assumed to undergo independent, flat Rayleigh fading. It is further assumed that the fading 
is slowly varying such that the lowpass equivalent channel seen by each antenna can be 
characterized by a complex-valued scalar. The system is assumed interference limited with 
negligible thermal noise. The CDMA reverse link receiver model is shown in Figure 3.1. 

The complex envelope of the signal received at the base station is then expressed by the 
M-dimensional vector: 

x(t) = yfcmi{t - Ti)«i(t - TI)CI + ^ekyf\kmk{t - rk)uk(t - rfc)cfe,        (3.5) 
fc=2 

where the first and second terms respectively, represent the desired signal and the CCI, Afc 

(k = 1, • • • , Ku) are the powers of the received signals, cfc are normalized complex Gaussian 

10 
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Figure 3.1: CDMA reverse link receiver model 

channel vectors with E [cfecf ] = I, I is the M x M identity matrix, mk(t) are NRZ wave- 
forms of the users' data, uk(t) are the spreading sequences, ek are binary random variables 
indicating the users' voice activity, rk are the users' delays. Let mk{t) = J2is* (0 M* _ iTa), 
where h(t) is the basic pulse shape, Ts is the symbol interval, i is the symbol interval in- 
dex, and sk (i) e {-1,1} are the users' binary data. It is assumed that E [sk (i)] = 0, and 
E [sk (i) si (j)] = SkiSij, where Ay = 1 for i = j, and (5y = 0 otherwise. The signature wave- 
forms are normalized to unit energy over the symbol interval. For convenience, T\ = 0. In a 
system that provides a single service (such as voice) with the same bit error rate and with 
perfect power control, all Afc's are equal. The received powers Afc, k = 1,... , Ku, are the 
result of path loss, shadowing and imperfect power control, and are modeled as independent, 
identically distributed (i.i.d.) random variables with log-normal distribution. If Afc has a 
log-normal distribution, then the received power expressed in dB, ak = 101og10 Afc has a nor- 
mal distribution with mean ma and variance a^. The standard deviation of ak is the PCE 
measured in dB. Since ak < ma with probability |, 1(P

Q/10
 is the median value of Afc. The 

voice activity ek is modeled as a Bernoulli (p) random variable with Pr (ek = 1) = p, where 
p is the voice activity factor. 

11 



Chapter 4 

Combining Methods 

In this chapter, we axe concerned with the flat (nondispersive), quasi-static fading channel, 
in which a desired signal competes with multiple CCI sources. The performance of adaptive 
arrays is studied for several channel models of the signal of interest (SOI): Rayleigh, Rice, 
non-fading. In all cases, the interference is assumed subject to Rayleigh fading. Channels 
associated with interference sources are assumed independent and identically distributed. 
It is further assumed that the fading is slow and that the receiver has perfect knowledge 
of the instantaneous channel realization and a coherent receiver can be implemented. The 
system is assumed interference limited. It is also assumed that the degrees of freedom are 
insufficient to remove all interferers, hence, thermal noise is neglected. 

We derive the ratio of mean signal power to mean interference power for EGC. For 
MRC we determine density functions for the signal-to-interference ratio (SIR) and, in some 
cases' expressions for the outage and probability of bit error. For optimum combining, we 
evaluate the SIR density function for the non-fading/Rayleigh and Rayleigh/Rayleigh cases, 
and closed form expressions of the outage probability and BER in terms of hypergeometnc 
functions. Moreover, we provides a comparison between the various methods. 

4.1    Equal Gain Combining 
With EGC, each channel is provided with phase compensation to match the phase shift 
in the channel (the phase is measured with respect to the reference antenna element). AU 
channels are provided with equal gain (without loss of generality, the gain is taken equal to 
unity). EGC is an attractive method due to its relative ease of implementation. 

The method was investigated by several authors. Jakes provided an expression for the 
SNR in the case of Rayleigh fading [11]. In [14], the cumulative density function of the 
SNR is evaluated by a series method for Rayleigh and Nakagami channels. This work is 
extended to Ricean channels in [16]. Here, we briefly study the EGC performance in the 
presence of CCI. The cases treated are of a desired signal subject to Rayleigh or Ricean 
fading and CCI subject to Rayleigh fading. These cases are referred to as Rayleigh/Rayleigh 
and Rice/Rayleigh, respectively. While with MRC and OC performance is evaluated by 
regarding the SIR as a random variable and characterizing its density function, with EGC 
our scope was limited to providing an expression for the ratio of mean signal power to mean 

12 



interference power. This simplification is necessitated by the fact that the desired signal is 
expressed by a sum of Rayleigh or Rice distributions for which closed-form expressions are 

not available. 
Before the following work, we have to stress again that the interference amplitude is 

assumed equal for all CCI sources and is given by y/Pi. This assumption while restrictive, 
facilitates the derivation of closed-form expressions 

The weight provided to the tth branch of the EGC is given by & = e**«.*. The array 
weight vector is then given by 

w = t , (4.1) 

where £T = [f i,... ,£N]. Based on the signal model in Chapter 2.1 ,The pre-detection signal 
at the array output is given by 

y[k]   =   w*u[k] 

(4.2) 
i=\ 

Note that £Hcs = Y^Li a*,i k a sum of Rayleigh/Rice random variables. It is easy to show 
that the signal power averaged over time and fading is given by 

S = PS(^N^ + N(N-1)ö;
2
), (4.3) 

where a2 = E \a2„], a", = E \as J. It can be shown that in the Rayleigh case, the mean 
value of the desired signal's power is given by [11] 

S = PsN[l + (N-l)ir/A] 

The interference power is given by, 

L 

(4.4) 

E ^Esf^w 
i=i 

=   P,(l-/?/4)$> 
*=i 

£Hd (4.5) 

where we used E [z?[k]] = 1 - /?/4. Since |s and c, are independent, 

E 

=   N. 

Hence, 

I = PI(l-ß/A)LN. 

(4.6) 

(4.7) 

13 



Thus the ratio of mean signal power to mean interference power for the Rayleigh/Rayleigh 
case (Rayleigh desired signal/Rayleigh CCI) is given by 

fff=l + (W-l)«/47| (4.8) 

Lt 

where 7 was defined previously. When the desired signal is subject to the Rice distribution, 

we have [38]: 

* = «-r (!),*(f,i,*) (4-9) 

and 

^' =   c-Vi(2,l,iO 
= (l + JO, (41°) 

where r (|) = \yft, and XFX denotes the confluent hypergeometric function. Expression 
(4.9) can be evaluated numerically and substituted back in (4.3). A simple approximation 
exists for large K [39], 

.*<«-».*>«£§£. («I) 
where T is the standard gamma function. Applying (4.11) in (4.9), (4.10) and in (4.3), we 
obtain for large K: 

S as PSN
2. (4.12) 

The EGC ratio of mean signal power to mean interference power for the Ricean signal with 
large K (non-fading signal) and Rayleigh CCI is then 

/zr = f 7- (4-13) 

It is observed that this ratio is proportional to the number of antennas and inversely pro- 
portional to the number of interference sources. 

4.2    Maximal Ratio Combining 

When the antennas outputs are combined according to MRC, it is possible to determine the 
density function of the output SIR in closed-form. The MRC weights are given by [38]: 

w = cs. (4.14) 

The output of the combiner is then given by 

y[k]     =    WHVi\k] 

=   v^|c.|aM*] + V^X>f **[*]• (4-15) 
i=l 
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It follows that the frame SIR is 

TM" (4.16) 
Elilc^f 

The analysis of MRC consists of the following steps: (1) evaluate the density function of 
fi (the SIR is a random variable with a range determined by the random vectors cs, c*), 
(2) evaluate the outage probability averaged over outcomes of /z, (3) make the Gaussian 
assumption with respect to the interference and express the BER conditional on the SIR ß, 
(4) evaluate the performance averaged over outcomes of //. The analysis is carried out for the 
Rayleigh/Rayleigh and Rice/Rayleigh cases. Unless stated otherwise, expressions developed 
in this section hold for an arbitrary number of antennas and interference sources. 

Equation (4.16) can be rewritten 

M = 7 
|cs|

2 (417) 

Eii i". 
2> 

where u{ = cf a/ \c8\. We claim that v{ and cs are independent. The interference is assumed 
subject to Rayleigh distribution, hence the elements of c, are i.i.d., zero-mean, complex 
Gaussian. It follows that the distribution of u{ conditioned on cs, is also complex Gaussian. 
The mean and the variance of the random variable ut conditioned on cs are respectively 

c? 
E[ui\c] = ±1E[*]=0, (4-18) 

-■s\ 

and 

P n    i21 n l       C"E ^ Cs 
E[\vi\   \cs\   =    —2  

c fljvc, 

IcJ2 

=   1. (4.19) 

The density of ut conditioned on cs can be written fVi (u{ | cs) = -n-1^"'1 . It is clear from 
this expression that i/< is independent of cs. The term |cs|

2 / £f=1 |i/4| in (4.17) is the ratio 
of independent random variables and it can be written 

_ Sj=i I C«J 1 (4.20) 

where cs = [cs>1,... , cs>N]T. 
For Rayleigh/Rayleigh (signal/CCI) fading and since each of Cs,j and ut are complex 

Gaussian random variables, 2| c8j f and 2\vi\2 are central chi-square random variables with 
2 degrees of freedom. The quantity C = Ef=i I c,j |2/ Ezti l^|2 is recognized as the ratio 
of two independent central chi-square random variables; the numerator with 2N degrees of 
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freedom and the denominator with 2L degrees of freedom. The distribution of C is therefore 
given by [40] 

f (n _ W + N)    C*-1 (4.2i) 
MU_r(L)r(iV)(i + c)L+iV 

for C > 0, N > 1, L > 1. The density in (4.21) is a modified form of the central F 
distribution. The term 'modified' refers to the fact that the ratio of two independent central 
chi-squared random variables normalized by their respective degrees of freedom has a central 
F distribution, while in this case the random variables are not normalized. It is observed 
that C ~ fF,where F denotes the F distribution. By using the transformation of variables 
\i - 7C, the density of the SIR \i can easily be obtained and is 

f (u) - nL + N)   r.     »"-1 (4.22) 

To reiterate, this expression applies only to equal-power interferers. The mean SIR is given 
by 

** - r(L)r(iv)7 h  d+»)L+N * 
N (4.23) 

L-l 
where L > 1. The mean SIR is proportional to the number of elements N and inverse 
proportional to the number of interference sources L. 

When the desired signal is subject to the Rice distribution, the terms csj in (4.20) are 
distributed as CM (y/K, l) • Hence, the distribution of 2| csJ |2 is non-central chi-square with 
2 degrees of freedom and parameter K. In the appendix it is shown that the distribution of 
C in (4.20) is given by, 

/c(0   =   e-^F^L + N^NK^ 

T(L + N)      (N- (4.24) 
T(L)T(N)(l + C)L+N' 

The density function of the SIR can now be obtained from (4.24) and the relation \i = 7C, 

/MOO   =   e-x^F^L + N^NK-^^ 

^(L + N)      ^ (425) 

r(L)r(JV)(7 + /«)L+jV' 
When K = 0, the relation above degenerates to the Rayleigh distribution case. When 
K -* 00, i.e., the desired signal is non-fading (non-fading/Rayleigh case), and the appropriate 
quantities are substituted in (4.16), the SIR at the output of the MRC can be expressed as 

"-•■Ä (426) 
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where cs = [l, e^ ... , e".."] , cf cs = AT, and S = £f=1 *cf. The matrbc S has a comPlex 

Wishart distribution CWN (IN, L) [41]. The distribution of C = cf Scs is OVx (N, L) [40], 
which is just the exponential distribution 

/c(0 = ^CI-1e-<'". (4.27) 

It follows that the distribution of the SIR [t = 7^VC is expressed by 

/,M = ^-L-1e-^- (4-28) 

Computation of the mean value of the SIR in the non-fading/Rayleigh case reveals that it 
is the same as in the Rayleigh/Rayleigh case, i.e., 

P-^- (4-29) 

4.2.1    Outage Probability 
The outage is defined as the probability of failing to achieve a prescribed SIR: 

P0 = Pr \p < /xj , (4.30) 

where pp is the desired SIR threshold. A suitable threshold level depends on the modu- 
lation technique used and performance desired [42]. For the Rayleigh/Rayleigh and non- 
fading/Rayleigh cases, the outage can be found in closed-form. For the Rayleigh/Rayleigh 
case, the outage is then given by, 

_   T(L + N)Lr*      M»-I (431) 

- r(L)r(iv)7 J0   (i + ^N^ l    } 

Equation (4.31) can be evaluated in a closed-form using integral tables [43]: 

T(L + N)    (V±)N2Fl(L + N,N;N + l.,-^), (4.32) 
n     r{L)T(N + l)\-y)  2 'V 7/ 

where 2Fl (a, 6; c; x) is the Gauss hypergeometric function [44]. Using (4.28) in (4.31), it is 
not difficult to show that the outage for non-fading/Rayleigh is given by 

_ r(L,Ar7//g } 
n-     r(L)     , v     ; 

where F(L,x) = f™ t^e^dt, is the incomplete gamma function [44]. 
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4.2.2    Average Probability of Error 

The computation of the probability of error is based on the Gaussian assumption for the 
interference. Specifically, the interference term in (4.15) is assumed to have a Gaussian 
distribution. The conventional form of the central limit theorem does not formally apply 
here as the interference term Vl[k] = v^Eti0?0«*^] consists of independent, but not 
identically distributed terms vfef c*. However, a form of the central limit theorem given by 
Cramer can be applied [45]. Cramer's central limit theorem states that the sum X\+.. -+Xn 

of a large number of independent variables, is approximately normally distributed if: (i) every 
component has a zero mean value, (ii) every component has a finite variance of = E [|Xj| J, 
and (in) ^/s« -► 0 and sn -+ oo, where sn = a\ + ... + a\. Prom the properties of the 
variable zt [k] specified following (3.2), it can be easily shown that aggregate interference 
j/7[fc] meets the conditions of the theorem, and hence, it can be assumed Gaussian. 

Consequently, the conditional BER is given by 

where Q(x) = -4j f™ e~t2/2 dt is the area under the tail of the Gaussian probability den- 
sity function. In integral tables used to obtain the results below, the related function 
erfc(-) (the complementary error function) is usually found (Q(y/2x) = \eric(y/x)). For 
the Rayleigh/Rayleigh case, using (4.22), the average BER can be written 

1   f°° 

An alternative expression to (4.35) in terms of hypergeometric series is given in [46]: 

LT(i-L)T(L + N) 
P.   = 

1 
2^F(L)T(N) 7 

( i \    .! r(L - i 
2F2fL + iV,L;L + -,L + l;7j+7^-^i^ 

r(-\)W + \)M (* + \ \\ ~ ^ 17) + r(L)r(l)iw (4.36) 

where 2F2(-) is a hypergeometric function. Even though (4.36) looks more involved than 
(4.35), it might be more convenient for numerical evaluations using a software package such 
as Mathematica. 

For the Rice/Rayleigh case, a closed-form expression could not be found for the average 
probability of bit error. 

4.3    Optimum Combining 
With optimum combining, the weight vector that maximizes SIR at the output of the array 

is [47] 
w = oJRT1^, (4.37) 
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where a is an arbitrary constant. The constant a does not affect the SIR at the array output. 
The interference covariance matrix, conditioned on channel vectors c,, is 

R = J>Cicf, (4.38) 
i=l 

where the superscript {H} stands for transpose complex conjugate. Note that R varies with 
the fading rate and that we have assumed that the fading rate is much less than the bit rate. 

The vectors chi = 1,... ,L, are i.i.d., complex Gaussian with mean {E[c*] = 0} and 
covariance matrix {£ = E [c*cf ]}. The same parameters hold for cs. By definition, £ is 
positive semidefinite and Hermitian. By assumption, it will be positive definite, hence, its 
inverse exists. When independent fading at each antenna element is assumed and a = 1, 
then E = IN, where IN is an identity matrix of dimension N. When E > 0, i.e. positive 
definite, and L>N, the matrix R is positive definite with probability one [48]. Thus, R-1 

exists in (4.37). The density of such random matrices was studied in [49]. Therein it is 
shown that the joint distribution of the elements R is given by: 

/R(R) = W) R>0,E>0 (43Q) 

[ 0 otherwise, 

where | • | denotes the determinant of a matrix. The complex multivariate gamma function 
fN(L) is defined 

f„(L)=7r^nr(L-; + l), (4.40) 
i=i 

where T(-) is the standard gamma function. The quantity 0F0
(L) (A_1rE_1R) is a hyperge- 

ometric function with matrix arguments [49]. The matrix A = diag (Pi,... , PL). For the 
special case of P* = Pi, i.e., all interferers have equal-power P/, the density function in (4.39) 
reduces to the complex Wishart distribution 

I  0 otherwise, 

where tr(-) denotes the trace of a matrix. In deriving (4.41) from (4.39), we have used the 
following relations [50]: 

0Po(i)(A-1>-S"lR)   = oPo(L) (PT1!, -£-XR) 

= 0Po(L) (I, -Pf^R) 

= oPo (-P/^S^R) 
- = e-tr(p-is-iR) (4.42) 

The distribution in (4.41) (apart from a constant factor) is the complex Wishart distribution 
with parameter E and L degrees of freedom. It is denoted as CW/v(E,L). The Wishart 
distribution is the multivariate generalization of the chi-square distribution [50]. 
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4.3.1    Density of Maximum SIR for non-fading/Rayleigh Case 

For the Rice/Rayleigh and case, the SIR at the output of the optimum combiner is given by 
fj, = 'y^ where 

C = cf(CCH)-1cs, (4-43) 

and 7 _ paj (Pj (i _ ß/4)). The vector cs has a multivariate distribution which is given by 

CMN (VKIN, IN) , while the columns of C{ [cl5... , cL]} have a distribution which is given 

by CNN {ON,IN), where 0^ is a vector of zeros of dimension N. The density of C can be 
found according to  [40]. After a suitable transformation, we obtain 

/,(M)   =   e-NKiFi(L + N,N;NK-^y 
.L+l-N 

T(£ + l) I*1-1 (4 44) 
r(L + i-7V)r(iv)(7 + At)

L+1' 

where the expression holds for a number of CCI sources L > N. Note the similarities and dif- 
ferences between this expression and (4.25); both have a modified non-central F distribution, 
but with different degrees of freedom. 

In the non-fading/Rayleigh case, the SIR at the output of the optimum combiner is given 

by 

li = 7cf S^c., (4-45) 

where S = CCH. To determine the SIR density at the output of the optimum combiner, 
first note that S has a complex Wishart distribution CWN (I,L). The distribution of C * is 
then CWi (1/N,L + 1-N) [40]. Then, 

t  (n _       NL+1~N        jy_L_2     AT/C (4.46) 

It follows that 
/»r     \L+1-N 

f (u) = JEll -uN-L~2e-N^. (4.47) 

The mean value SIR for the non-fading/Rayleigh case is computed to be 

N (4.48) 

4.3.2    Density of Maximum SIR for Rayleigh/Rayleigh Case 

Using (4.37), the maximum SIR for Rayleigh/Rayleigh case at the array output can be easily 
computed and is given by 

/x = Pscf R-Xcs, (4-49) 
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where R is as defined in (4.38). Since the channel ca and the CCI co-variance matrix R are 
both random, the SIR \i is a random variable. Such random variables for the general case 
of arbitrary interference powers P* were studied in [49]. It is shown that the density is given 
in terms of the hypergeometric function iF0 with matrix arguments: 

W-loZH-l 

f(u\- 
r(L + 1) Ü 2_|ArVb(L)(L + l;Y;Z), (45°) M^~r(A0r(L + i-A0(i + /?A*)L+l1       10   ^      '     ;'       v 

where ß > 0 is a constant, and XF0
(L) (L + 1; Y; Z) is a hypergeometric function of matrix 

arguments. The constant ß is such that the zonal polynomial series for the 1F0
(i) function 

converges for all Z. The matrices Y = IL -ßh~l and Z = diag((l + ßu)~\ IAT-I) • Details on 
the theory of zonal polynomials can be found in [49, 51]. Further analysis of this general case 
fails to gain insight into the performance of such systems due to the conditioning of f^fj) 
on the powers of individual CCI (through matrix A) and the complexity of the theory for 
this general case. This motivates to continue the analysis with the special case equal-power 
interferers. 

The covariance matrix R, in the case of equal-power interferers is 

R = P/^cicf. (4.51) 
i=l 

Let R = P/Ri, where Rx = Yn=i cicf ■ The maximum SIR ß is 

A* = Pscf R^c. = gcf Rrxcs = f>, (4-52) 

where the real scalar quantity v = cf R^. Since cs is complex Gaussian with mean 0, 
covariance matrix S, and it is distributed independently of Ri which is CWN(T,,L), the 
density of v is [40, 49] 

f(u) = r(L + 1) ^—      i/>0, KN<L. (4.53) IA }     T(N)r(L + l-N)(l + v)L+l ~   '    "     " V 

The distribution in eq. (4.53) is a modified form of the central F distribution. In multivariate 
statistics, when the elements of c* are real Gaussian with zero means and a2 variances, and 
the elements of cs are real Gaussian with arbitrary means and o2 variances, then u (apart 
from a constant) is known as the Hotelling's T2 statistic [50]. When cs and c* have the same 
mean vector 0 and the same covariance matrix S, the distribution of v is known as the Null 
distribution of the Hotelling's T2 statistic [52]. By using the transformation // = gi/, the 
density of the maximum SIR \i can easily be obtained and is 

t (u) = r(L + 1) (*JL) -J±       AX > 0, 1< N < L.        (4.54) 
MW     T(N)Y{L + l-N)\Pi) (g+//)L+1 ~     " 

It is important to note that the density of p does not depend on the form of the covariance 
matrix S. In other words, the performance of the optimum combiner is the same regardless 
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whether the fading at the receiver antenna elements is independent or not. This is, however, 
only true for L > N and equal-power interferers. 

Further insight can be obtained by calculating the mean SIR E [//]. We have, 

L+l-N    /-oo ..N 

EW   ~   T{N)T{L + \-H)\PiJ- h    (ft+/^)L+1 ^ 

N    P"        1<N<L. (4.55) 
L-NP! 

It should be noted that the integral involved in the computation of E [/i] does not exist for 
L = N. For a number of CCFs L much larger than the number of antennas JV, the mean 
SIR is proportional to N. 

4.3.3    Outage Probability 
Probability of outage is an important statistical measure in the design of cellular mobile radio 
systems which operate in a fading environment with multiple interferers [53]. It represents 
the probability of unsatisfactory reception over the intended coverage area. A system planner 
can use outage probability calculations to assess the effects of various system configurations 
on the quality of service provided by the system. The outage probability is denned as the 
probability of failing to achieve a SIR sufficient to give satisfactory radio reception and is 
expressed as 

P0 = Probability [/z < fj.p] 

=    /     fMdP 

_     °     r(L + l) /ft\"-" [»      fU\ (4.56) 
" r(iv)r(L + i-iv)U/       Jo   (ft + ^)L+1 

where /x is the SIR protection ratio which depends on the modulation technique used and 
performance desired. In other words, the outage probability is the cumulative distribution 
function. Equation (4.56) can be evaluated as the following infinite series form [54] and is 

P = E£±!) -f^-Y^jL + l^N + l;-^), (4.57) n     T(N + l)T(L + l-N)\ Ps )   2 l\ Ps y 

where iF\ (a, b; c; x) is the hypergeometric function defined as [55] 

2Fl(«,6;c;*) = i;^5. (4.58) 
_ n=0       \C)n 

The notation (•)„ is called the Pochhammer symbol and is defined as (o)„ = ^y^- The 

infinite series in (4.57) is convergent. 
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4.3.4    Average BER 
As mentioned earlier, subsequent to Rayleigh fading, the in-phase and quadrature compo- 
nents of each of the received cochannel interferers have a Gaussian distribution. That is, 
each of the quantities y/PicMt), i = 1,... , L, has a complex Gaussian distribution. The 
sum of the interferers is also complex Gaussian. Since the optimum combiner is a linear 
filter, the sum of the interferers at the output of the optimum combiner (antenna array) 
is also complex Gaussian. Thus, the conditional BER, i.e., the BER computed for a given 
value of ß, is simply 

where Q{-) is the area under the tail of the Gaussian probability density function and is 
defined as 

1     f°° 
"*2/2 dt. (4.59) 

In integral tables used to obtain the results below, the related function erfc(-) (the com- 
plementary error function) is usually found. The relation between the two functions is 
Q(y/2x) = ^erfc(v^)-The average BER, i.e., the one averaged over all the values of /z is 

1   f°° 

= siwS^srT^ifS^ (4-6o) L+l-N    »oo ..N-l 

As shown in the appendix, (4.60) can be evaluated as 

1 \fPs\
L+1-Nr(N-L-\)T(L + l) 

i p       — 2^rT(N)T(L + 1-N) \PJJ (N-L-l) 

( 3 Ps\     fPs\*r{L-N + l) 
2F2^L + l,L + l-N;L-N + -,L-N + 2]fij + ^fij r(^ 

i l/ii i 3 PS\    r(L + i-JV)r(|)r(JV)' 
r(_l)r(iV + -)2F2^ + -,-;iV-L + -,-;^ + ^ ^  

(4.61) 

where pFq(-) is the generalized hypergeometric series and is defined as [55] 

T-,   , i L        \        V (fll)n * - * (%)n xU (A ßo\ 

PFA^..- ,ap-h,... A^) = 2^{bi)n...{bq)n^- (4-62) 

Equation (4.61) can be evaluated using software packages such as Maple, Mathematica, etc. 
Alternatively, (4.60) can be evaluated numerically. 
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4.4    Numerical Results 
In this section numerical results axe presented on the performance of MRC and OC. Per- 
formance is evaluated for 6 or 18 equal-power interference sources subject to independent 
Rayleigh fading. A reminder, in all figures, SIR is to be understood as the frame SIR and 
the quantity 7 is defined as 7 = Pa/Pj/ (1 - ß/4). Unless specified otherwise, ß = 0 and 

P. I Pi = 1- 
In Figures 4.1-4.6 the SOI and CCI are subject to Rayleigh fading. In Figure 4.1, the 

density function of the frame SIR measured at the array output is plotted for L = 6 inter- 
ference sources, with the number of antenna elements N as the parameter. These curves 
clearly show that the SIR has a better chance to take on high values with the increase in 
the order of diversity TV, regardless of the combining method. Note that OC significantly 
increases the chances of higher SIR values, as compared to MRC. For N = 1, both MRC 
and OC provide identical results, as expected. In Figure 4.2, the density functions of the 
frame SIR obtained by both theory and Monte Carlo simulations are compared for the case 
of L = 6 interference sources. These curves show a very good match between the theory 
and simulations. Figure 4.3 shows the outage probability versus the channel SIR 7 with the 
number of antennas N as the parameter. The figure shows the case of L = 6 interference 
sources and ß = 0 excess bandwidth. For a given 7, OC decreases the outage probability 
as compared to MRC and this decrease becomes even greater as N increases. For a given 
outage probability, increasing N reduces the required 7, subsequently enabling an increase in 
the number of users. In Figure 4.4, the average probability of bit error is plotted versus the 
channel SIR 7. The curves represent theory and simulations results for L = 18 interference 
sources. The BER shown accounts for SOI and CCI subject to Rayleigh fading as expressed 
by (4.36) for MRC and by the results in [1] for OC. Figure 4.5 provides the average probabil- 
ity of bit error as a function of the channel SIR 7 for two values of the number of antennas. 
It is observed that OC can provide improved BER even in the case when the number of 
interference sources L = 18 is much larger than the number of antennas. For example, for 
a BER of 10~3 and N = 6, OC requires 1 dB less input SIR than MRC. Figure 4.6 shows 
the improvement, due to OC versus the average probability of bit error with the number of 
elements N as the parameter. The improvement is defined as the reduction in the required 
input SIR per channel 7, to obtain a given BER using OC and compared to MRC. The 
improvement increases with N and slowly decreases with decreasing BER for a given N. 

Figures 4.7-4.8 show the effect of the SOI subject to Ricean fading or non-fading. The 
curves represent the case of N = 4 antenna elements and L = 6 interference sources. In 
Figure 4.7, the density functions of the frame SIR are plotted for MRC and OC for the 
Rice/Rayleigh case. The density functions are given by (4.25) for MRC and by (4.44) for 
OC. The SOI is subject to Ricean fading with parameter K = 5. Figure 4.8 contains curves 
of the density functions of the frame SIR for MRC and OC for the non-fading/Rayleigh 
case, as given by expressions (4.28) and (4.47), respectively. The curves represent the case 
of N = 4 antenna elements and L = 6 interference sources. 

Meantime, we present the results on the performance of the array with optimum com- 
bining studied in the previous sections . We evaluate the system performance for the worst 
case scenario only, i.e., the mobile transmitting the desired signal is at the point in the cell 
farthest from the base station, and the interfering mobiles in the surrounding cells are as 
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close as possible to the base station of the desired mobile. Furthermore, we consider only the 
six strongest interferes (L = 6), i.e., interferers from the first tier of cochannel cells. This is 
a reasonable assumption as the interference from the second tier of cochannel cells is negli- 
gible. As explained in the introduction, we make the assumption of equal-power interferers. 
Due to this assumption, the results are pessimistic with respect to the case of unequal-power 
when the largest interferer is of the same power as the ones assumed here. The variance a2 

of the channel coefficients was assumed 1. 
In Figure 4.9, the probability density function of the maximum SIR \L is plotted, with 

the number of antenna elements N as the parameter. This curve clearly show that the 
maximum SIR /x has a better chance to take on large values as N increases. In Figure 4.10, 
the densities obtained by both the theory (eq. (4.54)) and Monte Carlo simulations are 
compared. Simulations were carried out using MATLAB software. The channel vectors were 
assumed constant over one bit interval and independent between different bit intervals. The 
number of samples used in the Monte Carlo simulations was 200,000. A very good match 
between the theory and simulations is evident from the figure. 

Figure 4.11 shows the outage probability versus Ps/Pi with N as the parameter. For a 
given outage probability, increasing N reduces the required PJPI, subsequently increasing 
the number of users. 

In Figure 4.12, the BER is plotted versus Ps/Pi with N as the parameter. For a given 
BER, increasing N reduces the required Ps/Pi, which in turn, leads to an increase in the 
system capacity. 

Figure 4.13 shows the diversity gain due to optimum combining versus the number of 
antenna elements N. The diversity gain is defined as the reduction in the required PjPi, 
for a given BER, with a corresponding increase in N. 

It should be noted that the results provided here are for the worst case scenario, and 
hence, pessimistic. In a real system, the performance of the optimum combiner can be 
expected to be far better than the one shown in this paper due to the following: first, due 
to random locations of the mobiles, the total received interference power will be lower than 
in the worst case assumed here, second, all channels in all cells may not always be occupied, 
reducing the total interference. 

4.5    Discussion 

In this chapter, we studied and compared the performance of digital cellular mobile radio 
communication systems employing antenna arrays utilizing various forms of combining the 
outputs: MRC, OC, and EGC. The problem addressed was the detection of a BPSK signal in 
the presence of multiple CCI sources in a quasi-static, flat fading environment. The analysis 
considered Rayleigh or Rice fading of the SOI and Rayleigh fading for the CCI. For EGC, 
expressions were derived for the ratio of mean signal power to mean interference power for 
Rayleigh and Rice fading. For MRC, analytical expression were obtained for the density 
function of the SIR, the average outage probability and the average probability of bit error. 
For OC, the density function of the SIR, the average outage probability and the average 
probability of bit error were obtained for Rice fading and Rayleigh fading. 
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All results were obtained under the assumption of equal power CCI sources. For MRC, 
the results hold for an arbitrary number of interference sources, while for OC the number 
of sources is larger or equal to the number of antennas. In this case, the array degrees of 
freedom are not sufficient to null the interference sources and thus fading of the interference 
has a significant impact on performance. The analytical expressions derived in the paper 
facilitate the comparison of MRC and OC and demonstrate the advantage of OC even when 
the number of CCI sources exceeds the number of antennas. 
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— Optimum Combining 
- - Maximal Ratio Combining 

Figure 4.1: Probability density function of the frame SIR for L = 6 interference sources, 
Rayleigh/Rayleigh fading. 

Figure 4.2: Theory and simulation, optimum combining and maximal ratio combining, for 
L = 6 interference sources, Rayleigh/Rayleigh fading. 
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Figure 4.3: The outage probability versus 7 with the order of diversity JV as the parameter 
for L = 6 interference sources, Rayleigh/Rayleigh fading. 
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Figure 4.4: Theory and simulation: average probability of bit error versus number of anten- 
nas for L = 18 interference sources, Rayleigh/Rayleigh fading. 
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Figure 4.5: Bit error rate versus SIR for L = 18 interference sources, Rayleigh/Rayleigh 

fading. 

Average probability of bit error 

Figure 4.6: Improvement of OC over MRC for L = 18 interference sources, Rayleigh/Rayleigh 

fading. 
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Figure 4.9: The effect of the number of antenna elements on the probability density function 
of// 

N = 6 
PS/P = 1J 
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using 200,000 samples 

Figure 4.10: A comparison of the probability density function using theory and simulation 
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Figure 4.11: The outage probability versus Jf with the number of antenna elements N at 
the parameter 
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Figure 4.12:  The average probability of bit error versus ^ with the number of antenna 
elements N as the parameter 
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Figure 4.13: The diversity gain versus the number of antenna elements N 
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Chapter 5 

Exact Bit Error Probability for 
Optimum Combining 

In this chapter, we derive expressions for the exact bit error probability (BEP) for the 
detection of coherent binary PSK signals of the optimum combiner employing space diversity 
when both the desired signal and a Gaussian co-channel interferer are subject to flat Rayleigh 
fading. Two different methods are employed to reach two different, but numerically identical, 
expressions. 

The first method is a direct approach of obtaining the conditional BEP and then averaging 
over fading of the SOI and CCI. The second method is based on the moment generating 
function (MGF) - based method [56]. The latter results in expressions that are easier to 
compute than the direct method. The same upper bound can be derived for each of the two 
method. Using methods delineated in this letter and in [56], results obtained by the MGF 
method can be easily extended to M-PSK and QAM modulations. 

5.1    Moment Generating Function 
Consider the reverse link (mobile to base) of a digital mobile radio communication sys- 
tem employing an AT-element antenna array at the base station. The channel is assumed 
quasi-static, i.e., fixed over some arbitrary time of interest defined as a frame. The chan- 
nel assumes uncorrelated realizations in different frames. Following carrier demodulation, 
matched filtering and sampling at the symbol interval, we change Expression (3.1) into: 

u(jfe) = y/Ka (k) cs + z(k), (5.1) 

where a (k) G {-1,1} is a binary symbol, Pi and cs are respectively, the power and the 
channel propagation vector for the SOI. With independent Rayleigh fading at each antenna, 
the vector cs has a complex-valued multivariate Gaussian distribution with E [cs] = 0 and 
E [cscf ] = I, where the superscript H denotes transpose and complex conjugate. It is 
further assumed that the interference can be expressed as 

z(k) = b{k)cI + n(k), (5.2) 
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where the amplitude b (k) has a zero-mean, complex-valued Gaussian distribution with vari- 
ance P2, c/ is the interference propagation vector which is i.i.d. with cs, and n(fc) is zero- 
mean, white spatial noise with E [n(k)nH{kj\ = o2!. With this signal model, the interference 
is Gaussian conditional on the vector cj. The interference spatial covariance matrix in effect 
over the period of a frame is given by R = E [z(k)zH(k) | cj] = P2Cjcf + a2l. 

The maximum SINR at the array output is given by 

^ = P1cfR-1cs. (5.3) 

Note that the SINR fi is conditioned on cs and C/, and thus it varies at the fading rate. 
Eq. (5.3) can be expressed as 

/i = i\cf QA-^c, (5.4) 

where A is a diagonal matrix of the eigenvalues {Ai,... , XN} of R and Q is unitary matrix. 
Let s = QHcs. Since Q is unitary, the elements of s retain the properties of the elements of 
cs. Thus eq. (5.4) can be rewritten as 

^p^hü, (5.5) 
i=i 

A, ' 

where sT = [si,... ,SN]. Since the elements of cs have complex-valued Gaussian distribu- 
tions, each term \si\2 is a chi-square random variable with two degrees of freedom. The 
eigenvalues {A*} of R are 

J-ftEL Cl,n\2+<?2     1=1 
« = 2,...,JV, 

where cj = [c/,1,... ,cJiN]. Each of {| c/,„ |2} is a chi-square random variable with two 
degrees of freedom. 

Due to the mutual independence of the terms in eq. (5.5), the moment generating function 
(MGF) of \i conditioned on Ai is given by  [57]: 

where Ps = P!E[|cS)„|2] ,n = 1,... ,N, is the mean signal power per antenna and c^ = 
[ci,„,... , cSiN]. The MGF given above provides the starting point for each of the two methods 
of analysis. 

5.2    Direct Method 

Let h = Ps/a2 denote the mean SNR per antenna (channel). Therefore, the conditional 
probability density function (PDF) of yu can now be obtained by applying the inverse Laplace 
transformation to (5.6) and is given by [57, p. 410]: 

U,M = ^v)^ ^ " * 0, A, > a\ N > 1, (5.7) 
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where xFi (•) is the confluent hypergeometric function and T(-) is the standard gamma func- 
tion. Clearly, if the interference is fading, Ax is a random variable that assumes new values 
at the fading rate. Note that in references [22, 23], Ai in (5.7) was assumed constant, i.e., it 
was replaced by its mean value, E [Ai] = ATP/ + a2, where Pi = P2E [|cj,„|2], n = 1,... , N. 
Conditioned on At, the probability of bit error is computed from 

/•OO 

Pe/x, =   /   Q(V^)U/MdiJ- 
Jo 

=   \-\ [' ed{yfäU/Xl[l*W, (5-8) 

where Q(x) = f /°° exp(-^)dy is the Gaussian Q-function and erf(-) is the error function. 

Using the identity1 erf(^) = ^sß e-"i*k (l; \\ ^) [58]. sad relation [59> P- 2241 "* (5-8)' 
we get 

e/Al     2 0F^r(JV)^(A1 + Ps)
w+3 

where F2(-) is Appell's hypergeometric function defined in [60]. It can be shown that the 
series in (5.9) converges. 

Since each of {| c7,n |2} has a chi-square distribution, Ax = P2 £n=1 I c2,« I2 +a > has the 

PDF 
(Al -T2) 

/A,(Ax) = r^Pf ^ - ay-'e-^T-, Ax > a2. (5.10) 

The BEP averaged over all values of Ai is given by 
/•OO 

Pe=   /      P./A1/A1(Ai)rfX1. (5.H) 
Jo 

Substituting (5.9) and (5.10) into (5.11), 

P _ i.üi^  »   r ^_^(Al-CTr-v^ 

x«(W + i, 1,^-1;^;^.^)«.- <«*> 

A closed form expression for the integral in (5.12) is not known, however, the integral can 
be evaluated numerically. 

A simpler upper bound can be derived for (5.12). Using the bound Q{\/2JJ,) < \e~^ and 
integral tables [59, p. 223] in eq. (5.8), we get 

Pe/Al ~ ^(AI + P.XI + ä)*-
1
" (5'13) 

The expression in (5.13) provides meaningful insight into a few special cases. When there 
is no interference, i.e., P2 = 0,Ai = a2, the conditional BEP of (5.13) reduces to Pe < 
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1(1 + h)~N. This is the upper bound for the BEP of an TV-order space diversity receiver 
employing maximal ratio combining (MRC), as expected. When the interference power is 
large, i.e., P2 -» oo, (Ax -► oo), (5.13) reduces to Pe < |(1 + /0_(JV_1). This is the upper 
bound for the BEP of an (N - l)-order diversity MRC receiver without interference. Thus 
the presence of an interference with infinite power results in the loss of one diversity path, a 
result first mentioned in [22, 23]. 

5.3    Moment Generating Function Method 

This part was contributed by Alouini and Simon. 
In this section, the MGF-based method is used to develop the exact BEP for BPSK 

modulation with optimum combining in the presence of a Gaussian CCI when both SOI and 
CCI are subject to Rayleigh fading. 

Using the alternate representation of the Gaussian Q-function [56], namely, 

^=lf^-^h (5-14) 

and after reversing the order of integration, eq. (5.8) can be rewritten as 

P'^ = \[ f^{-£e)^d^ (5A5) 

= lf^(-m>de' (516) 

where the MGF ^Al(s) conditional on Ai is given by (5.6). Now averaging the conditional 
BEP of (5.15) combined with (5.6) over the PDF of Ai given by (5.10), we obtain 

P = e 

1     N  r L^ f/        *     ■    (A.-^f-expf-^)^. 

(5.17) 

Now letting y = (X1- o-2)/Pu and recognizing that 

a2 

Pi      ftP/' 

then, (5.17) becomes 

(5.18) 

ff/2 i r°° 14- ^-"L r 1 r +  P V        -y^e-ydyde. (5.19) i     ri> i r°°      l + ^v 
Pe=^ml (H^r^ (i+^+^).: 
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Finally, letting z = ^y, (5.19) becomes 

p--irrwW Jo  (i+^Ä^yo (1+A+*)       Ui 
(5.20) 

To evaluate the integral on z, we use [61, p.336, eq.(3.383.10)]. We have, 

f° ^tlzv-ie-^dz = /f-VT(ü)r(l - v, ßfi) + ßve^T(v + l)T(-v, /?//),        (5.21) 
Jo    ß + z 

where T(a,x) is the complementary incomplete gamma function [61, p.950]. Recognizing 
from (5.21) that ß = 1 + ^, v = JV and also that T(iV + l)/r(AT) = N, we obtain after 
some simplification the final desired result 

+Ki+^M-Mi+^)^h (5-22) 
If one wants to simplify the notation a bit, then define 

'«"=(1 + ^)^ (5-23) 

in which case (5.22) simplifies to 

*\hPi)   Jo 
TQ.-N, /(*)) + N^f(e)T(-N, /(*)) dO. (5.24) 

This is an exact result which involves a single integral with finite limits and an integrand 
composed of an exponential and two complementary incomplete gamma functions. This 
should be compared with the BEP obtained via the direct method in (5.12), which involves 
a semi-infinite integral with an integrand containing the more complicated Appell hyperge- 
ometric function (not readily found in standard software packages such as Mathematica). It 
is of interest to examine the special cases with the MGF method. 

For the special case of no interferer, i.e., P/ = 0, {\x = a2), eq. (5.19) becomes 

p* = -r7^/   7—irvf    yN-le-ydyde- (5-25) *T{N)Jo      (l + 5^)    Jo 
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Using [61, eq.(3.381.4)], eq. (5.25) simplifies to 

i   rl2 i 
Pe = ~ ~ W^, (5-26) 

*J°      (1 + m) 

which corresponds to the performance of coherent PSK with MRC and an iV-element array. 
For the special case of a single infinite power interferer, i.e., Pi = oo (Ai = oo), eq. (5.25) 

simplifies to 

1        /*T/2 i r°° 

.      *T(N)Jo       1 + -A,        Jo 

=   -T/2
7 ^d». (5-27) 

"" Jo      (1 + -Az) 

Thus, based on exact expressions for BEP, we observe that for the infinite power interferer, 
the array uses up one entire order of diversity to cancel it. This same conclusion was 
reached via the direct method only based on the upper bound (5.13) on conditional BEP 
and in [23] based on approximate expressions for average BEP (obtained by replacing Ai by 
E [Ax] = NP! + a2). 

5.3.1    Bounds on Average BEP 

Strict upper bounds on the conditional BEP are easily obtained from (5.15) combined with 
(5.6). In particular, the conditional BEP is given by 

e|A 
i   r*/2 i l i /       i          1  d9. (5.28 

1    Wo    (i + ^r^i + ahfe) 

Since the integrand is maximum at the upper limit, i.e., 0 = ir/2, then upper bounding the 
integrand by its value at 0 = 7r/2 gives the upper bound on the conditional BEP as 

1 Ai_ 
Kl^2(X1 + Ps)(l + h)N-1- P.,At < L»    ^w, .,„_,- (5-29) 

This is the same result as (5.13). The bound on the average Pe is then obtained after some 
manipulations by averaging the left-hand side of the previous expression over the density 
function of Ai in (5.10): 

Pe<A 
N-l 

{N _ !), _ (_!)"-' ijy-ie* Ei (-r,) + $> - ^ (-'?)N~1~fc 

P
' 

(5.30) 

where Ei (•) is the exponential integral, A = (2 (1 +Ji)N r(JV))     and rj = (Ps + a2) /Pt 
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5.4 Numerical Results 
Numerical results axe provided to illustrate the analysis presented in the letter. Results are 
shown for binary PSK modulation. Relations (5.12) and (5.24) provide the exact BEP via 
the direct and MGF methods, respectively. Numerical evaluation of the two relations shows 
that they are indistinguishable as they should be since they are both exact. In Figure 5.1, 
eq. (5.12)/(5.24) and [[23, p. 223], eq. (25)] are plotted as a function of average total SNR 
defined as iVff, where N is the order of diversity. The difference between the curves obtained 
using eq. (5.12) and [[23, p. 223], eq. (25)] is small, but evident. This difference is more 
evident in Figure 5.2, which zooms in on part of Figure 5.1. There is a simple explanation as 
to why the values of the probabilities that we obtained are numerically close to those in [[23, 
p. 223]]. The performance, i.e., the BEP, of the optimum combiner is shown for the cases 
N = 2, 4. In either case, the array has sufficient number of degrees of freedom to suppress 
the interference, regardless of whether the interference is fading or non-fading. 

5.5 Discussion 
In this chapter, we developed expressions (eqs. (5.12),(5.24) ) for the exact BEP of the 
optimum combiner of BPSK signals with Gaussian co-channel interference in flat Rayleigh 
fading. Unlike previous work, this expression takes into account the density function of the 
fading interference. The closeness of the exact expression to the approximation using the 
average interference power justifies the use of the approximation in practice. 

6 8 10 12 
Average total SNR (dB) 

Figure 5.1: BEP of the optimum combiner in Rayleigh fading with a fading Gaussian co- 
channel interferer. 
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Figure 5.2: BEP performance on a magnified scale, TV = 2 antennas. 
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Chapter 6 

Analysis of CDMA system with MRC 

This chapter is attempted to provide a comprehensive analysis which joins several of the 
most important factors affecting the performance of CDMA systems. In particular, new an- 
alytical expressions are developed for the outage and bit error probability (BEP) of CDMA 
systems. These expressions account for adverse effects such as path loss, large-scale fading 
(shadowing), small-scale fading (Rayleigh fading), and CCI, as well as for correcting mech- 
anisms such as power control (compensates for path loss and shadowing), spatial diversity 
(mitigates against Rayleigh fading), and voice activity gating (reduces CCI). The new ex- 
pressions may be used as convenient analysis tools that complement computer simulations. 
Of particular interest are trade-offs revealed among system parameters such as maximum 
allowed power control error versus the number of antennas used for spatial diversity. 

6.1    Instantaneous Output SIR 
Based on the signal model in Chapter 2.2, following spread spectrum demodulation and 
sampling at the symbol interval, the received signal can be written: 

y(i)   =    / x(t)Ul(t)dt 
JiTs 

=   \AiSi(i)ci + ^efcxAfc(sfe(«-l)pfe +Sk{i)pt)ck, (6.1) 
fe=2 

where pi = f£+Tk uk{t - Tfc)«i(t)(ft, pt = £•?*+£* «fc(* - rk)ui(t)dt are the correlations 
between user signatures. It is assumed that the correlations above are independent of the 
symbol interval index i. 

If the CCI is spatially white, the optimum output SIR is provided by maximal ratio 
combining (MRC). The array weight vector w then acts as a channel matched filter, w = Ci. 
The array output is expressed: 

z(i)   =   wHy(i) = cfy(i) 

=   0s(*) + 0;(i), (6-2) 
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where 

4>a(i) = y/\i*i(i)c* Cl (6.3) 

and 

h (»') = c? Z)ejb ^ (Sfc (i ~ X) ^ + Sfe (*) Pk) cfc (6-4) 
fc=2 

axe the desired signal and CCI respectively, at the array output. Over the duration of a bit, 
it is assumed that the interference can be approximated by an equivalent source using the 
following expression: 

<f>j (i) = a(*)cf Z e* VÖfcCfc^ (6-5) 
Jfe=2 

where s(i) combines the total interference bit effects during the bit duration and nk is a gain 
factor incorporating the effect of cross-correlation with the desired user's signal. This model 
is a worst case of sorts, in which interference sources are not independent, however, it has 
the advantage of being analytically tractable (see also [12]). The instantaneous output SIR 
is then written: 

7 = M^!. (6.6) 
|*i(0f 

6.2    Computation of Outage Probability 

The outage probability provides an indicator of how often the communication link's quality is 
under a specified acceptable level. The system capacity is generally computed for a prescribed 
outage level. The outage with respect to the instantaneous SIR was studied in [6]. In some 
case (for example, when the mobiles transmit voice rather than data), it is more suitable to 
consider the outage based on the average SIR (the averaging is over the Rayleigh fading). 

Let the outage be defined as the probability that the average output SIR, iE, falls below 
a prescribed threshold 7tfe, PoE = Pr (7^ < 7tfc), where the average SIR 7^ is given by: 

1E = E l*.(0la 

Lh(0|- 
For maximal-ratio combining, the average output SIR 

(6.7) 

M 

7E = Y^I
I™> (6-8) 

m=l 

where /xm is the single element input SIR. In our system model, the input SIR is assumed to 
be equal at all elements, fim = n, then 7^ = M //, where \i is defined by: 
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ß = ± = —± . (6.9) 

It is noted that the average SIR is conditioned on the realization of fj,. For full characterization 
of 7B, it is necessary to determine the density of \i. Since e^ G {0,1}, J" is the sum of 
log-normal random variables. The number of elements in the sum is X^fe=2e*=- Following 
Wilkinson's method [62, 24], J is approximated by a log-normal random variable; it is then 
proceeded to match E [J] and E [J2] with the corresponding cumulants of the log-normal 
distribution. In [6], expressions are found for the mean mg and variance ag of the normal 
variate g = hip. It follows that the outage probability can be written: 

Pos = Pr(<7<ln^|). (6.10) 

Since g is normally distributed, (6.10) can be expressed 

P„E = l-Q(^_Z^), (6.11) 

where Q (x) = f™ -4= e~x l2dx is the Gaussian tail function. 
Relation (6.11) provides the closed-form computation of the average SIR outage proba- 

bility as a function of Rayleigh fading, PCE, and voice activity. When the communication 
link's quality is sensitive to the instantaneous SIR, the result in [6] should be used to evaluate 
the outage probability. 

6.3    Computation of the Probability of Bit Error 
Computation of the bit error requires knowledge of the distribution of the interference at 
array output. Due to dissimilar shadowing and fading affecting the various users, interferers 
are not identically distributed, hence the central limit theorem cannot be strictly invoked to 
claim the Gaussian property. Nevertheless, the Gaussian property is often assumed in such 
analyses [30, 33, 63, 64]. In this paper, the Gaussian assumption is validated by a chi-square 
test presented in the next section. 

For BPSK and Gaussian interference, the conditional BEP is given by 

b = P(e | 7) = Q (v^) , (6.12) 

where 7 is the instantaneous SIR and is given by: 

Al    H      |2 
1   Cl Cl 

7 
c? Efc=2efc\APfcCfc 

(6.13) 

44 



The variate 7 is a function of Rayleigh fading, shadowing (PCE), and voice activity. The 
distribution of 7 is required to determine the average probability of bit error. The conditional 
density of 7 was found in [11, 12] 

where // was defined in (6.9). The BEP b is a function of the instantaneous SIR 7, hence a 
random variable. The density of 6 can be found from [65, p.125]: 

Mb\»)=Wlß) (6.15) 
7=§[«9-1(6)]2 

where Q~l is the inverse function of Q. After a few manipulations it can be shown that, 

db 1 
e -7 

dj        2y/yjr 

Substituting (6.16) into (6.15), one has the conditional density of 6, 

(6.16) 

\M-1 
.,.,   >        M(7///) —  7 

ix (1 + 7/» 
(6.17) 

7=|[Q-1(6)]2 

The function Q_1 can be evaluated by numerical integration. The unconditional density 
of b can be obtained by averaging over the distribution of \i 

fb(b)= /    fb(b\ß) /„(Ai)dA*. (6-18) 
Jo 

Replacing \L by \x = e9 , one gets 

/■oo 

/>(&)   =   y    hQ>\*) f9(g)e9dg 

=   E9[G(b,g)}, (6.19) 

where fg (g) = fß (g) / \dg/dn\ltsseB and G (b,g) = fb(b\ e9) e?. Since // has a log-normal 
distribution, # = ln/z is normally distributed. An exact closed-form result for the integral in 
(6.19) is not available, however an approximation exists for Eg [G(b, g)] when g has a normal 
distribution. The approximation is valid for an arbitrary probability function G(b, g) and is 
expressed in terms of the mean mg and the standard deviation ag [66]: 

fb (b) Si |G(6, mg) + ±G(b, m9 + VSag) + l-G{b, mg - VScrg). (6.20) 
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The computation of the mean and variance of g, mg and crg, respectively, is discussed in [6], 
thus the previous relation expresses fb (b) in terms of known quantities. To reiterate, fb (6) 
accounts for the effects of Rayleigh fading, shadowing (PCE), and voice activity. The BEP 
density function in (6.20) is a more complete characterization of system performance than 
the more common average BEP. The latter, can be obtained by using the density of 6, or 
from the following argument. The conditional BEP can be expressed as: 

/■oo 

P(e|/i)   =    /    P(e|7)/7(7lf0d7 
Jo 

=   tf„jf    Q^^JL—*,. (6.21) 

Following [46], (6.21) can be expressed utilizing hypergeometric functions: 

P{elfi)   =   2T(M + 1) [2/xF(M + 1}2HM + *' 1;3/2'2;/J) 

-2JßT(M + 1/2) 2F2(M + 1/2,1/2; 1/2,3/2; //) + T{M)},     (6.22) 

where 2^2(0 is the standard generalized hypergeometric function [39]. Expression (6.22) 
can be evaluated numerically by using software packages such as Maple, Mathematica, etc. 
Alternatively, (6.21) can be evaluated numerically. The unconditional BEP is found by 
averaging P(e | /x) over the distribution of //: 

/•oo 

Pe =        P(e\ /.) SM dp (6.23) 
./o 

In terms of the normal random variable g, g = In //, one gets 
/oo 

P(e\g)f9(g)dg = Eg[P(e\g)]. (6.24) 
•oo 

Finally, using the same approach as in (6.20), one can obtain the average probability of bit 
error: 

Pe   =   Eg[P(e\g)] = Eg[H(g)] 

a*   -H(em«) + -H(em«+^a«y\+^H(em'-y/iaA, (6.25) 

where we introduced H(g) = P(e \ g) as a notational convenience. 

6.4    Extensions of Previous Results 

Some of the results obtained previously can be extended to more general cases. These 
include: other cell interference, correlation of shadowing among users, channel with time 
dispersion, pilot tone effect, and performance analysis in terms of Erlang capacity. These 
effects are discussed below. 
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Other Cell Interference. CCI is caused by inter-cell interference as well as intra-cell 
interference. This is particularly true for CDMA, for which the reuse factor is one. The 
other cell interference was studied in [67, 68]. If the same traffic load is assumed in all cells, 
the effect of CCI introduced by users of all other cells is equivalent to the effect of CCI 
from qKu users of the home cell, where q is a factor that is determined empirically. With 
K'u = Ku(l + q), all the results developed so far apply with Ku replaced by K'u. 

Correlation of Shadowing Among Users. The analysis of the outage probability assumed 
independent shadowing among users. In practice, when signals received from different users 
are shadowed by the same obstacles in the vicinity of the base station, the shadowing affecting 
the users may be correlated. This requires some modifications in the computation of the 
quantities mg and ag used in determining the outage probability P0E- In [6] it is shown that 
the normal variate g (In of the input SIR at each antenna element), is expressed in terms of 
the first and second moments of the interference power J, E [J] and E [J2], respectively. 
The computation of E[J], as shown in [6], is not affected by the correlation assumption. 
However, in the presence of correlation, the computation of E [J2] is different than it is 
presented in [6]. We proceed now with this computation. By assumption, the power of the 
fcth user Afc, has a log-normal distribution, hence ak = lnAfe, has a normal distribution with 
some mean mQ and some variance a2

a. The shadowing correlation coefficient is defined as 

Tkj 
E [(a* - mQ)(aj - rna)] (6.26) 

where ak and a.j are assumed identically distributed. For simplicity, we assume rkj = r for 
k ^ j and k,j = !,••■ ,Ku. We have, 

E[J*\   =   E 

=   f^nlE [4e2a*] + 2£  £ nkVjE[eke^eje^} 
fc=2 fc=2 j=k+l 

fc=2 jjtk fc=2 

where p is the voice activity factor defined earlier. Using terminology from [6], the interfer- 
ence mean is expressed E [J] = e^. Letting J = eß, and since J is log-normal (hence ß is 
normal), we also have 

E[J\=E [eß] = em^aV2 = e* (6.28) 

E [J2] = E [e2ß] = e
2m?+2°ß = e**. 

Solving for iriß and a2ß, we obtain 

mß   =   2f! - -£2, 

(6.29) 

(6.30) 

(6.31) 
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Now, from (4.23) and the log-normality of Ai and J, it follows that ß = Xi/J is also 
log-normal. We have 

g = ln/i = In -^ = ai - ß. (6.32) 

The density function of \i is determined from the mean and variance of g, which can be 
expressed in terms of known quantities: 

mg   =   ma- mß, (6.33) 

o-]   =   (T2
a+o-2ß-2raßcrQ(Tß, (6.34) 

where raß is the correlation efficient between ai and ß. Once mg and a2
g were obtained, the 

computation of PoE can be completed as in the uncorrelated case using (6.11). 
The results above can be extended to the general case when rkj are not equal, and ak 

have different mean values and variances (see [69, 24] for more details about the expression 
of e^2 and calculation of raß). 

Frequency-Selective Channel. The reverse link channel is assumed frequency-selective 
with L resolvable paths. A Rake receiver is used to track and combine the paths. Following 
spread spectrum demodulation, the signal received at the antenna array from the Zth path 
can be written as an M-dimensional vector: 

y/ (i)   =   V^v si («)cu + ]T V^ («i (* - 1)PlJn + si (*)Piin) ci« 

Ku     L 

+ Y 5Z ek\f\kn {sk(i - l)p«„ + sk(i)ptin) cfcn,   Z = 1, • • • , L,     (6.35) 
fc=2 n=l 

where k = 1,... , Ku is the user index, n = 1,... , L is the path index, Afcn are the re- 
ceived signal powers, ckn are the channel vectors, p^ln = JiT'

+Tkn uk(t - rkn)ui(t - Tu)dt, 

Pkin = //i+rll Uk(f - Tkn)ui(t - Txl)dt, Tki and Tfen are the delays. Assume that the cross- 

correlations are independent of the path I, i.e., p^ = pki
+. The various terms in (6.35) 

represent the desired signal, self-interference, and CCI, respectively. In the following, it is 
assumed that the self-interference contribution is negligible in comparison with the CCI. Sig- 
nal vectors associated with the different paths, yj(i) (I = 1, •' • • , L), are stacked to form an 
ML-dimensional vector, y(i), and grouped according to components related to the desired 
signal and CCI, yielding the expression (see [70] for details): 

y(i) = V/ÄT51(z)c1+j(z), (6.36) 

where y(i) = [yj(i), ■ • ■ , yI(i)]T, cx = [cfx, • • • ,c[JT. The first term in the relation above 
represents the desired signal, j(i) is the interference, the superscript "T" denotes transpose. 
With MRC in both space (antenna array) and time (Rake) domains, the output is equivalent 
to applying MRC to the stacked vector in (6.36). The MRC weight vector is then given by 
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w = ci. Similar to the approach taken earlier, it is assumed that the interference can be 
expressed as an equivalent source: 

Kit 

j(») = S(») ]C 52 ^V^kn^kn Cfc„, (6-37) 
fe=2 n=l 

where a(i) is the CCI source bit, nkn is a gain factor representing the cross-correlation between 
codes. The double sum over the scaled ML-dimensional Gaussian distributed vectors ckn is 
equivalent to another Gaussian vector, 

KU   L  
52 52 €k V%»Afc» c*» = VJcp, (6.38) 
fc=2 n=l 

where 

J = 5^ H€fc7?fcnAfcn 

fc=2 n=l 

=   f^A», (6-39) 
fe=2 

and i/fc = Y%=1 rjkn. The expression in (6.39) is similar in form to (6.37), thus the evaluation 
of the outage probability can continue as in the flat channel case. The distribution of the 
output SIR is obtained from (6.14), by substituting M with ML, to account for the additional 
diversity paths provided by the frequency-selective channel: 

, (7 , „) =  JMfr/M)1"-1 . (6.40) 
M7IW     /i(l + 7//*)A«.+i V 

All other results in the section hold by substituting M with ML. 
Pilot-Aided Coherent Detection. In this case, the reverse link is assumed with pilot-aided 

coherent detection and perfect channel estimation. The power-split ratio for the pilot is rp. 
Subsequently, the fraction of the total transmitted power that is used for the information 
traffic is 1/(1 + rp). With this model, the instantaneous output SIR is given by V = ivy, 
where K = 1/(1 + rp), and 7 was given in (6.13). Therefore distribution of the output SIR 
7' is given by: 

/.(y.^.jWsftL, (6.41) 
M7lW        K/i(l+7'/KA0M+1' V 

and POE and Pe can be modified accordingly. In particular, the outage probability is given 

by 

= 1_Q(±$L^y (6.42) 
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Performance in Terms of Erlang Capacity. For a communication system, capacity may 
be measured in terms of the number of users per cell, or in terms of offered traffic intensity 
in Erlangs. Wireless system can be modeled as having Poisson traffic arrival, exponentially 
distributed service time, finite number of servers, and no waiting room (expressed as an 
M/M/N/N queue). The system capacity of FDMA or TDMA is obtained by analyzing 
the blocking probability of an M/M/N/N queue. Since users in CDMA systems all share 
a common spectral frequency band, the blocking condition of a CDMA system could be 
defined in a different way from that of FDMA or TDMA [25]. The blocking condition in 
CDMA systems will be defined as the case when the average SIR at base station falls below 
a prescribed level. This is the same definition as the outage referred to earlier in this section. 
For a finite number of communication channels, Poisson distribution cannot strictly represent 
the number of active users per cell. Nevertheless, the approximation of Poisson distribution 
is often used in the analysis [25, 68, 71]. Then the distribution of the number of active users 
in the system is given by: 

P[KU = k] 
r 

fe = 0,l,2, (6.43) 

where C is determined by both call arrival rate and service rate. The mean value and 
variance of Ku are given by C = E[KU] = var[tf„]. For simplicity, we assume that the factors 
rjk, denned following (6.5), are equal, nk = n. The first and second moment of the interference 
J are to be averaged over Ku. From (6.37), and with Afc = eafc, we have 

E[J) 

(6.44) 

and 

E[J2]   =   EKu E, '«fc,Ofc 

(C-l)pv2e2ma+^1 

+ (£2 _ 2C + 2) p2 n2e2m°+tT° = e?*, (6.45) 

Using these expressions we can proceed to compute the relation between outage PoE and 
Erlang capacity (£). The parameter C is amended to C(l + q) for K'u = Ku{\ + q), if taking 
into account the other cell interference. 

6 J5    Numerical Results 
Results in this section are derived from computer simulations of a CDMA system employing 
BPSK modulation and BPSK spreading, with a voice activity factor of p = 3/8 and a 
spreading ratio of 85. The spreading ratio corresponds to an information data rate of 14.4 
kb/s and a signal bandwidth of 1.23 MHz. Unless specified otherwise, the number of antenna 
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elements assumed in the simulations was M = 4. The channel was assumed flat and subject 

to Rayleigh fading and shadowing. 
First, the validity of the Gaussian approximation for the CCI was evaluated for Ku = 30 

users, and PCE = 1.5 dB. To that end, the histogram of the interference level was generated 
and compared to the theoretical Gaussian curve. This is shown in Figure 6.1. Additionally, 
a chi-square test following the method presented in [65] was applied to evaluate the goodness 
of the fit. The sample space was partitioned into 21 disjoint intervals corresponding to a 
test with 20 degrees of freedom. Standard chi-square test tables show that for 20 degrees of 
freedom, the threshold for a 1% significance level is 37.57. Calculated from the simulation 
and averaged over 200 Monte Carlo runs, the chi-square statistic D2 was 22.14, which does 
not exceed the threshold. It is concluded that the Gaussian approximation is valid for the 

interference. 
The outage probability with respect to the average SIR is plotted in Figure 6.2 as a 

function of the capacity (number of users/cell) with the PCE as a parameter. For two- 
antenna selective diversity at cell site, adequate reverse link performance ( Pe < 10 3) is 
achievable with an array input of SIR < 5 [26], which is equivalent to array output SIR < 
.7.5. If we use the same array output SIR requirement for the receiver in Figure 3.1, then 
the outage threshold is set at ith = 7.5. The analytical curves in Figure 6.2 are computed 
from (6.11), and the simulation curves are based on one milhon samples. For an outage 
of 10~2, the system capacity is approximately 90, 47 and 24 users/cell for PCE = 0, 1.5, 
and 2.5 dB, respectively. Consequently, for PCE = 1.5 to 2.5 dB, the system capacity 
degrades 48% to 73% compared to the case of perfect power control. The effect of space 
diversity on the outage probability for average SIR is shown in Figure 6.3. For an outage of 
PoE = 10-2, the system capacity is about 9 to 72 users/cell for M = 1 to 6, i.e., the average 
capacity increase for each additional degree of space diversity is about 13 users/cell. A clear 
illustration of the trade-offs between the effects of antenna arrays and PCE can be found in 
Figure 6.4. The figure shows the capacity (computed analytically for P0E(1E < 7-5) = °-01) 
as a function of PCE and the number of antenna elements. The figure shows that for capacity 
of 30 users/cell, a two-element receiver at the base station requires the PCE to be less than 
1 dB, while an six-element receiver can relax this requirement to 2.8 dB. The figure can 
be used to find the system capacity for a given PCE and for different number of antenna 
elements. Clearly, these results however, do not take into account effects such as coding 
and interleaving. For example, when PCE = 2.5 dB, the system capacity increases from 
10 users/cell to 38 users/cell for an increase in the number of antennas from M = 2 to 6. 

Figures 6.5 and 6.6 depict the distribution of the probability of bit error (b) with various 
values of PCE and number of antennas. These PDF curves shift toward to lower value of b 
as PCE decreases and the number of antennas increases. Figure 6.7 displays the analytical 
results for the average probability of bit error as a function of the number of users per cell. 
The system parameters are same as in Figure 6.2. If the desired performance is Pe = 10"3, 
capacity is respectively 55, 45 and 32 users/cell for PCE = 0, 1.5, and 2.5 dB. In a CDMA 
system with a PCE from 1.5 to 2.5 dB, the system capacity degrades from 18% to 42% 
compared to the case of perfect power control. 

Finally, we examined some of the extensions discussed in the previous sections. Figure 6.8 
shows curves of outage probability versus capacity for PCE = 1.5 dB, M = 4 antennas, L = 4 
time diversity paths, and different values of the correlation coefficient (r). For r from 0.2 

51 



to 1, the system capacity degrades from 6% to 21% compared to the case of uncorrelated 
shadowing (r = 0). Erlang capacity is shown in Figure 6.9. The figure depicts curves of 
outage probability versus Erlang capacity, C(l + <z), for M = 4 antennas, L = 1 resolvable 
path, r = 0, voice activity p = 3/8, and PCE = 0, 1.5, and 2.5 dB, respectively. This figure 
parallels the results of Figure 6.2. 

6.6    Discussion 
In this chapter, we studied the reverse link performance of cellular CDMA systems, with 
space-time processing, Rayleigh fading, shadowing, power control error and voice activity 
gating. The performance was analyzed in terms of outage probability for average output 
SIR, as well as average probability of bit error. Analytical results were obtained that provide 
simple, but accurate approximations that can be used to evaluate system performance. All 
parameters needed for the computations can be obtained from measured data. The analysis 
shows that space-time processing provided by cell site antenna arrays along with a Rake 
receiver, compensates for performance degradations due to PCE in cellular CDMA systems. 
Computer simulations provided a good match to the analytical expressions developed in 
the context. It is noticed that the exact system performance improvement due to adaptive 
antenna arrays varies with the fading environment and cell layout. Since the implementation 
of adaptive antenna arrays introduces more digital signal processing and larger time delays, 
the interaction among the adaptive antenna, coding, interleaver, call processing and etc. 
requires further evaluation viasimulations and field tests. 

-60        -40        -20 0 20 40 60 80 
interference level 

Figure 6.1: Gaussian fit to the interference histogram. 
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Figure 6.2: Outage probability versus capacity (users/cell), based on average SIR, for four 
antenna elements M = 4, various PCE's, and p = 3/8. 
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Figure 6.3: Outage probability versus capacity (users/cell), based on average SIR. Analytical 
results for PCE = 1.5 dB, M = 1 to 6, and p = 3/8. 
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Figure 6.4: Capacity (users/cell) versus PCE for PoE {lE < 7.5) = 0.01. Analytical results 
for M = 1 to 6, and p - 3/8. 

Protetolity of Bit Error - b, Ku = 60, and M = 4 

Figure 6.5: PDF of probability of bit error with Ku = 100 and M = 4. 
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Probablity of Bit Error - b, Ku = 60, and PCE = 1.5 dB 

Figure 6.6: PDF of probability of bit error with Ku = 100 and PCE = 1.5 dB. 
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Figure 6.7: Average probability of bit error versus capacity. Four antenna elements, M = 4, 
various PCE's, and p = 3/8. 
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Figure 6.8: Outage probability versus capacity (users/cell), based on average SIR. Four 
antenna elements M = 4, four resolvable paths L = 4, PCE = 1.5 dB, different values of 
correlation coefficient r, and p = 3/8. 
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Figure 6.9: Outage probability versus Erlang capacity, based on average SIR. Four antenna 
elements M = 4, one resolvable path L = 1, r = 0, different PCE's, and p = 3/8. 
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Chapter 7 

Reduced-Rank Array Processing 
Techniques 

In this chapter, we study the application of the eigencanceler, a reduced rank method based 
on the eigendecomposition of the estimated covariance matrix, to the wireless communica- 
tion problem in the presence of cochannel interference. The eigencanceler's performance is 
compared to that of a system utilizing sample matrix inversion (SMI). The application of 
SMI and the eigencanceler to a flat fading TDMA system is studied in the context of the 
IS-54/IS-136 standard. 

7.1    BER Bound with Training Data 
Based on the signal model in Chapter 2, the optimal combiner output is given by 

y = wHu 

where the optimal weight vector is w = R_1cs. Scaling of the weight vector has no 
effect on the output, hence the weight vector can also be expressed w = R_1r, where 
r = E [a [k] u [k] | cJ = y/Fscs is the cross-correlation vector between the desired signal 
symbol and the received vector. The output SNR conditioned on the channel cs is then 
given by 

M=||cs||
2^ = ||cs||

2/., (7.1) 

where ||-||2 denotes the Eiiclidean norm. Subsequent to the Gaussian assumption on the 
CCI, the conditional BER is given by P (e | /x) = Q (v7^), where Q is the Gaussian tau 
function. 

Let Ai, i = 1,... ,N denote the eigenvalues of the noise covariance matrix R in descending 
order, Ai > A2 > ... Assume that the L interference sources result in a noise covariance 
matrix with r < N principal eigenvalues, such that Ar » Ar+i = ... = XN = N0. It can be 
shown that the upper bound on the average BER is given by [19] 

Pe<0.5(l + /i)-(iV-r). (7-2) 
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In practice, the true noise covariance matrix R as well as the cross-correlation vector r, 
are not available and need to be estimated from the data. Assuming the availability of a 
training sequence of length K, the cross-correlation vector is estimated from the expression 
r = l/KY\K

= a [k] u [k]. The estimated cross-correlation can then be used to estimate the 
interference vector x[fc] = u[Jb] - a[k]r. The estimated interference and noise covariance 
matrix is given by R = 1/K £f=15c[A:]x[Af. We assume that r = r, and focus on the 
effect of estimating the covariance matrix. The goal is to investigate the effect of R on 
expression (7.2). In the following, it is assumed that the covariance matrix is estimated from 
a training set x(fc), k = 1,... , K. The training set is assumed to have the same statistics as 
the interference-plus-noise during normal operation, i.e., x(fc) has a multivariate Gaussian 
distribution with zero-mean and covariance R. We define the conditioned signal-to-noise and 
interference ratio (CSNR) p as the ratio of the SNIR when a specified weight vector w is 
used, to the optimal SNIR, rHR"1r. The CSNR is then given by 

P = 

I     H   I2 i lw*rl        1 (73) 

w^Rwr^R-V 

The quantity p is a random variable that takes on values 0 < p < 1, (p = 1 wnen 

w = R_1r) and with density fp (p). The BER conditioned on both the channel and CSNR 
is P(e | p,p) = Q (\ßpp)- The performance penalty is made evident by the inequality 
Q (yflpp) > Q (y/2p) ■ The mean BER can be found by averaging over both the CSNR and 

fading: 

Pe = r fp(e\ p, p) U (p) /„ (P) dpdp, (7.4) 
Jo   Jo 

where /„ (p) is the density of p [19]. We proceed to analyze the BER for two different 
methods of deriving the weight vector w. The sample matrix inversion (SMI) weight vector 

is given by w = R_1r. The CSNR becomes 

(r-R-r)2 _^ (7.5) 

The density of p for the SMI has been found in the classical paper [72], and is given by the 

beta function 

f (o) T(K + 1)    (    _    )N-2    K+l-N (7.6) 

We first evaluate P (e \ p) = £ P (e | p, p) fP (p) dp. Using Q (y^pp) < 0.5c~«* and [73, 
relation 13.2.1], it can be shown that 

P(e | p) < 0.5iFi {K + 2-N,K + l,-p), (7.7) 

where ^ is the confluent hypergeometric function. This expression is dependent on the 
number of samples K used to estimate the covariance matrix. Using (7.7) and the Kum- 
mer transformation 1F1(a,6,-p) = e^F, (b - a, b, p) [73, relation 13.2.1], we obtain the 
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expression 
/»oo 

Pe < 0.5T-\N - r)h-(N~r) /    e-^1+1/hV(JV"r"1)i^ {N-1,K + 1; p) dp, (7.8) 
Jo 

which is recognized as a Laplace transform. Applying relation [74, p. 510], and after some 
algebra, this transform is evaluated as 

Pe < 0.5 (1 + h)-(N-r) 2Fx (N-l,N-r,K + l;h/(l + h)), (7.9) 

where 2F\ is the Gauss hypergeometric function. This result is consistent with (7.2), since 
as the number of training samples 

K->oo, lim   2F1(N-l,N-r,K + l;h/(l + h)) = l 
K—»oo 

[60, p.3], and (7.9) reverts to (7.2). The effect of finite K can be assessed by evaluating the 
function 2Fr. This function is available in software packages such as Mathematica, or it can 
be approximated by a series. Better insight into the effect of training is obtained by applying 
the asymptotic expansion of 2-P1, [75, p. 238]: 

2^1 (a,b,c + m;z) = l + — +o(m~2), (7.10) 
fit 

where m > 0. For the problem at hand, we have 

2Fl(^-i^-r.g + i;V(i + ft)) = i + (JV"T"r)rTÄ+o(Jf"2)-    (7-u) 

Substitution of (7.11) in (7.9) yields 

P. < 0.5 (i+«-«-> (1+{N~T~T)Yh+° c^)) •     (7-12) 

The significance of this relation is that for a given interference rank r, the BER increases 
quadratically with the number of degrees of freedom. 

The SMI performance is compared with^that of the eigencanceler. The eigencanceler 
is derived from the eigendecomposition of R, and its weight vector when the interference 

rank is r, is given by w = (i-QiQf) r [76], where the columns of Qi are the r eigenvectors 

associated with the principal eigenvalues of the sample covariance matrix R. It can be shown 
that for large INR, the density function of the CSNR p for the eigencanceler is given by [77]: 

fP(p) = T-1 (r) ITe-*1-" (1 - Pf'1 ■ (7-13) 

Using (7.13) in (6.25), we evaluate the conditional BER bound P (e \ p) < 0.5 /„ e^fp (p) dp. 
We make the assumption that the values of the output SNR p for which the density function 
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"£+•(£)! i-!^^(.+.(*-,n 

is non-vanishing are such that ß < K. With this assumption, the previous integral can be 
evaluated as 

P(eK)<0.5e-(l-£)-'[l-^^], (7.14) 

where V (a, x) = J00 e_'ta_1cft. The series expansion of the terms in the parenthesis yields 

P(e|/x0)<0.5e-'t 

(7.15) 

Keeping only the first order terms of K, and assuming K » //, the conditional BER is bound 
by 

P(e|/z)<0.5e-"(l + |;). (7.16) 

Substitution of (7.16) in (6.25) yields: 

Pe < 0.5 (1 + *)-<"-*> (l + r-V^^-h + o (JTa)) (7.17) 

For large K, this expression can be approximated by the first two terms in the parenthesis. 
The eigencanceler's advantage over SMI is evident in the linear rather than quadratic increase 
in BER as a function of the degrees of freedom N. 

7.2    Numerical Results 
The theory developed above is illustrated through numerical results obtained from simula- 
tions. The simulation model consisted of two sources: a desired signal with specified SNR 
and an interference with INR = 2 dB. The modulation was BPSK, the number of antenna el- 
ements N = 9, and the number of training samples used for estimating the covariance matrix 
K = 14 (this conforms with the training specified by the IS-54/IS-136 TDMA standards). 
The fit between simulation data and theory is illustrated in Figure 62. The simulation re- 
sults represent the error count of 280,000 Monte Carlo runs. The channel was assumed 
fixed over the processing interval, but was varied randomly from run to run. Theoretical 
curves were generated by evaluating the integral in (6.25) numerically, using the SMI and 
eigencanceler probability density expressions in (7.6) and (7.13), respectively. A good fit is 
observed between theory and simulations. 

The error bounds and the exact BER expressions are compared in Figure 62 as a function 
of the SNR for the case of K = 14 training symbols. The approximations are based on (7.12) 
and (7.17), respectively. An error of about 1 dB is observed between the bound and the 
exact values. The bound error has three sources: (1) error due to the approximation of the 
Gaussian tail function with the quantity 0.5e-'*, (2) error due to the assumption that INR is 
large, (3) error due to the assumption that K is large. The Gaussian tail approximation is 
the main source of the bound error. The INR provides negligible error. This is explained by 
the well known fact that the output of an adaptive array with sufficient degrees of freedom 
and optimum combining is not very sensitive to the interference power. 
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7.3    Application to IS-54/IS-136 

The IS-54/IS-136 TDMA system uses 7r/4-shifted DQPSK modulation. The probability of 
symbol error for 7r/4 -DQPSK is given by [78]: 

1      f2n      1 r      (,     C0SA dt. (7.18) 

A typical IS-54 TDMA frame contains K = 14 synchronization symbols that can also be 
used for array training. Performance of a TDMA system with an antenna array controlled 
by the SMI or eigencanceler methods was evaluated by simulation. The signal environment 
was modeled by three cell layers. With all channels fully occupied, interference was provided 
by 6 CCI sources from the first layer, 12 CCI sources from the second layer, and 18 CCI 
sources from the third layer, while ignoring interferences from other outlying layers. CCI 
sources were assumed to be the base stations of the surrounding cells. The normalized 
eigenvalue distribution of a sample interference and noise covariance matrix for an JV = 
9 element antenna is shown in Figure 63. Note that most of the interference power is 
concentrated in the 6 largest eigenvalues, suggesting the use of a reduced-rank method such 
as the eigencanceler. Figure 63 shows the average BER versus the carrier-t'o-interference 
ratio (CIR) for an adaptive array with Eb/N0= 10 dB. The capacity of a TDMA system 
is expressed in terms of its reuse factor. Current 2G standards stipulate a frequency reuse 
factor of 7. The curves shown in the figure^are averages of 1000 runs. Each run consisted of 
estimation of the array covariance matrix R using K = 14 training samples, and a randomly 
chosen channel vector cs. Reuse factors are marked by arrows. For BER = 10~3, SMI can be 
applied with reuse factor 3, while the eigencanceler provides higher capacity corresponding 
to a reuse factor of 1. " 

7.4    Discussion 
This chapter considered reduced-rank antenna arrays for wireless communications. The 
content focused on the eigencanceler, but other reduced rank methods can be applied. Simple 
analytical expressions were obtained for the BER bound for the case of BPSK modulation 
and the presence of colored Gaussian CCI. The performance of a TDMA system as specified 
by the IS-54/IS-136 standards was studied by simulation. It was shown that reduced-rank 
processing at the base station can increase the capacity of TDMA systems by reducing the 
frequency reuse factor from 7 to 1. 
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Appendix A 

Appendix 

This section contains the derivation of (4.61). The average BER is given by 

1   f°° 

= 1°   r(L + i)      /M"-" rerfc(^   f-1   ^       (A-i) 
2T(N)T(L + 1-N)\PJ J0 

WW(£+/*)L+1 

Using the identity [55] 
_i 

erfc(V^) = ^e-$W_u(ti), (A-2) 

in (A-l), we get 

P __j r(L+i)    /^y+i-» r /*-* e-iw,l(^,   (A-3) 

whae Wp,9(-) is the Whittaker function of the second kind and is defined as 

Equation (A-3) can be evaluated in a closed form and is [79]: 

P« = ■ft ?)*<£ 

(A-4) 

*:£:!;!,})■   <A-5> 2^r(iV)r(L +1 - N) V P 

where G^n(-) is the Meijer's G-function and is defined as  [79] 

G„L *,-,-,A  ± f nr=1m-.)n;,r(i-aj+a) 
G™ vx &!,..., 6,;  2™ yc n?=ro+i r(i - &,+5) n;=n+i rK- - *> 
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where C is a curve separating the poles of njLi r(fei ~ s) from those of HJ=i r(x _ ai + s)' 
1 < g, 0 < n < p < q, 0 < m < q; x ^ 0 and | x |< 1 if q = p; x ^ 0 if q > p. See [80] for 
more definitions and evaluation of the G-function. Using the identity [79] 

<3K   * 
Oi, ...Op   \  = 

A   ) 
xai~lE (1 - ai + 6i,... , 1 - Oi + 6, : 1 - ax + a2,... , 1 - Oi + Op : x),     (A-7) 

in (A-5), we get 

1 (PS'" 
Pr  = .)•( 

L + 1,N + ±,N:N + 1:^Y (A-8) 

(A-9) 

2^T(N)T(L + l-N)\P 

where E(-) is the MacRobert's J5-function and is defined as [79] 

E(au... ,ap:bi,... ,bq : x) = 

t^=irm"air^0r 
^ n?=i r(ö* - ar) 
,+iFp-i (ar,ar - 6i + 1,... ,ar - bq + l;ar - ax + 1,... ,*,... ,ar - ap + 1; (-l)p_9x), 

(A-10) 

where PF9(-) is the generalized hypergeometric series and is as defined in (4.62). The " in f] 
denotes the omission of the term when s = r. Also, the * in pFq{-) indicates omission of the 
term (ar - ar + 1). Equation (A-9) is valid for p > q + 1. Using identity of (A-9) in (A-8) 
and 2F2 (iV, 0; N - L, J; £) = 1, we get 

P.   = 
 1 /ft 
2v/^r(iV)r(L +1 - N) v P 

y ^W-L-mN-L-lW^ 

2F2[L + l,L + l-N;L-N + -,L-N + 2 
(■ 

n.!,r,„4l,„(»t!,^-I.!>|J)t(£)-«t±l 
r(iV)2F2^,0;iV-L,i;^ 

■ ^ i /ft\^r(L-iv + |) 
';py + vp;      m 

- iv)r(|) 

2v^r(7V)r(L + 1 - N) 

fpsx L+l-Nr(JV_L_j)r(L + 1) 

vpJ (AT-L-l) 

*r(L-tf + i) 
2F2(L + 1,L + 1-JV;L-JV + |L-JV + 2;^) + (^   ^ 

i l/ii i 3 ft,\    r(L + i-iv)r(^ 
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(A-12) 
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